11 research outputs found

    Comprehensive DNA Adduct Analysis Reveals Pulmonary Inflammatory Response Contributes to Genotoxic Action of Magnetite Nanoparticles

    No full text
    Nanosized-magnetite (MGT) is widely utilized in medicinal and industrial fields; however, its toxicological properties are not well documented. In our previous report, MGT showed genotoxicity in both in vitro and in vivo assay systems, and it was suggested that inflammatory responses exist behind the genotoxicity. To further clarify mechanisms underlying the genotoxicity, a comprehensive DNA adduct (DNA adductome) analysis was conducted using DNA samples derived from the lungs of mice exposed to MGT. In total, 30 and 42 types of DNA adducts were detected in the vehicle control and MGT-treated groups, respectively. Principal component analysis (PCA) against a subset of DNA adducts was applied and several adducts, which are deduced to be formed by inflammation or oxidative stress, as the case of etheno-deoxycytidine (εdC), revealed higher contributions to MGT exposure. By quantitative-LC-MS/MS analysis, εdC levels were significantly higher in MGT-treated mice than those of the vehicle control. Taken together with our previous data, it is suggested that inflammatory responses might be involved in the genotoxicity induced by MGT in the lungs of mice

    Magnetite Nanoparticles Induce Genotoxicity in the Lungs of Mice via Inflammatory Response

    No full text
    Nanomaterials are useful for their characteristic properties and are commonly used in various fields. Nanosized-magnetite (MGT) is widely utilized in medicinal and industrial fields, whereas their toxicological properties are not well documented. A safety assessment is thus urgently required for MGT, and genotoxicity is one of the most serious concerns. In the present study, we examined genotoxic effects of MGT using mice and revealed that DNA damage analyzed by a comet assay in the lungs of imprinting control region (ICR) mice intratracheally instilled with a single dose of 0.05 or 0.2 mg/animal of MGT was approximately two- to three-fold higher than that of vehicle-control animals. Furthermore, in gpt delta transgenic mice, gpt mutant frequency (MF) in the lungs of the group exposed to four consecutive doses of 0.2 mg MGT was significantly higher than in the control group. Mutation spectrum analysis showed that base substitutions were predominantly induced by MGT, among which G:C to A:T transition and G:C to T:A transversion were the most significant. To clarify the mechanism of mutation caused by MGT, we analyzed the formation of DNA adducts in the lungs of mice exposed to MGT. DNA was extracted from lungs of mice 3, 24, 72 and 168 h after intratracheal instillation of 0.2 mg/body of MGT, and digested enzymatically. 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and lipid peroxide-related DNA adducts were quantified by stable isotope dilution liquid chromatography-mass spectrometry (LC-MS/MS). Compared with vehicle control, these DNA adduct levels were significantly increased in the MGT-treated mice. In addition to oxidative stress- and inflammation related-DNA adduct formations, inflammatory cell infiltration and focal granulomatous formations were also observed in the lungs of MGT-treated mice. Based on these findings, it is suggested that inflammatory responses are probably involved in the genotoxicity induced by MGT in the lungs of mice

    Lipid Peroxidation Generates Body Odor Component trans-2-Nonenal Covalently Bound to Protein in Vivo*

    No full text
    trans-2-Nonenal is an unsaturated aldehyde with an unpleasant greasy and grassy odor endogenously generated during the peroxidation of polyunsaturated fatty acids. 2-Nonenal covalently modified human serum albumin through a reaction in which the aldehyde preferentially reacted with the lysine residues. Modified proteins were immunogenic, and a specific monoclonal antibody (mAb) 27Q4 that cross-reacted with the protein covalently modified with 2-nonenal was raised from mouse. To verify the presence of the protein-bound 2-nonenal in vivo, the mAb 27Q4 against the 2-nonenal-modified keyhole limpet hemocyanin was raised. It was found that a novel 2-nonenal-lysine adduct, cis- and trans-Nϵ-3-[(hept-1-enyl)-4-hexylpyridinium]lysine (HHP-lysine), constitutes an epitope of the antibody. The immunoreactive materials with mAb 27Q4 were detected in the kidney of rats exposed to ferric nitrilotriacetate, an iron chelate that induces free radical-mediated oxidative tissue damage. Using high performance liquid chromatography with on-line electrospray ionization tandem mass spectrometry, we also established a highly sensitive method for detection of the cis- and trans-HHP-lysine and confirmed that the 2-nonenal-lysine adducts were indeed formed during the lipid peroxidation-mediated modification of protein in vitro and in vivo. Furthermore, we examined the involvement of the scavenger receptor lectin-like oxidized low density lipoprotein receptor-1 in the recognition of 2-nonenal-modified proteins and established that the receptor recognized the HHP-lysine adducts as a ligand
    corecore